top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frontiers of nano-optoelectronic systems / Lorenzo Pavesi ; Eugenia Buzaneva
Frontiers of nano-optoelectronic systems / Lorenzo Pavesi ; Eugenia Buzaneva
Autore Pavesi, Lorenzo
Pubbl/distr/stampa Dordrecht : Kluwer, 2000
Descrizione fisica XIV, 475 p. ; 25 cm
Collana nato science series Series II mathematics, physics and chemistry
ISBN 0-7923-6746-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990007906260403321
Pavesi, Lorenzo  
Dordrecht : Kluwer, 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Light emitting silicon for microphotonics / S. Ossicini, L. Pavesi, F. Priolo
Light emitting silicon for microphotonics / S. Ossicini, L. Pavesi, F. Priolo
Autore Ossicini, Stefano
Pubbl/distr/stampa Berlin [etc.] : Springer, c2003
Descrizione fisica XII, 282 p. : ill. ; 24 cm
Altri autori (Persone) Pavesi, Lorenzo
Priolo, Francesco
Collana Springer tracts in modern physics
Soggetto non controllato Semiconduttori
ISBN 3-540-40233-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990007900670403321
Ossicini, Stefano  
Berlin [etc.] : Springer, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Silicon nanocrystals [[electronic resource] ] : fundamentals, synthesis and applications / / edited by Lorenzo Pavesi and Rasit Turan
Silicon nanocrystals [[electronic resource] ] : fundamentals, synthesis and applications / / edited by Lorenzo Pavesi and Rasit Turan
Pubbl/distr/stampa Hoboken, NJ, : Wiley-Blackwell, 2010
Descrizione fisica 1 online resource (651 p.)
Disciplina 661.0683
661.0683 22
Altri autori (Persone) PavesiLorenzo
TuranRasit
Soggetto topico Nanosilicon
Silicon crystals
Soggetto genere / forma Electronic books.
ISBN 1-282-48274-2
9786612482748
3-527-62995-5
3-527-62996-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon Nanocrystals: Fundamentals, Synthesis and Applications; Contents; List of Contributors; 1 Introduction; References; 2 Electronic and Optical Properties of Silicon Nanocrystals; 2.1 Introduction; 2.2 Ab Initio Calculation for Small Nanocrystals; 2.2.1 Hydrogenated Silicon Nanocrystals; 2.2.2 Oxidized Silicon Nanocrystals; 2.2.3 Doped Silicon Nanocrystals; 2.2.3.1 Single-Doped Silicon Nanocrystals; 2.2.3.2 Codoped Silicon Nanocrystals; 2.2.4 Silicon Nanocrystals Embedded in a SiO2 Matrix; 2.3 Pseudopotential Calculations for Large Nanocrystals; 2.3.1 Effective Optical Gap
2.3.2 Radiative Lifetime2.3.3 Linear Optical Absorption; 2.3.3.1 Interband Absorption; 2.3.3.2 Intraband Absorption; 2.3.3.3 Excited State Absorption; 2.3.4 Third-Order Nonlinear Optical Properties; 2.3.5 Quantum-Confined Stark Effect in Si Nanocrystals; References; 3 Optical Properties of Intrinsic and Shallow Impurity-Doped Silicon Nanocrystals; 3.1 Introduction; 3.2 PL Properties of Intrinsic Silicon Nanocrystals; 3.2.1 Fundamental Properties; 3.2.2 Effect of Size and Shape Distribution on the PL Bandwidth; 3.2.3 Resonant Quenching of PL Band Due to Energy Transfer
3.2.4 PL Quantum Efficiency of Intrinsic Si Nanocrystals3.3 Shallow Impurity-Doped Si Nanocrystals; 3.3.1 Preparation of Impurity-Doped Si Nanocrystals; 3.3.2 PL from B-Doped Si Nanocrystals; 3.3.3 PL from P-Doped Si Nanocrystals; 3.3.4 Electron Spin Resonance Studies of Shallow Impurity-Doped Si Nanocrystals; 3.3.5 Location of Dopant Atoms; 3.4 P and B Codoped Si Nanocrystals; 3.4.1 PL Properties of P and B Codoped Si Nanocrystals; 3.4.2 PL Lifetime of P and B Codoped Si Nanocrystals; 3.4.3 Codoped But Not Compensated Si Nanocrystals; 3.5 Summary; References
4 Electrical Transport Mechanisms in Ensembles of Silicon Nanocystallites4.1 Introduction; 4.2 Background; 4.2.1 Basic Concepts Associated with Transport and Quantum Dots; 4.2.2 Previous Studies of Transport in Systems of Si; 4.3 Experimental Details; 4.4 Experimental Results and Their Interpretation; 4.4.1 The Low-x Regime; 4.4.2 The Low-x to Intermediate-x Transition Regime; 4.4.3 The Intermediate-x Regime; 4.4.4 The Percolation Threshold Regime; 4.4.5 The High-x Regime; 4.5 Discussion and Overview; References; 5 Thermal Properties and Heat Transport in Silicon-Based Nanostructures
5.1 Introduction5.2 Thermal Conductivity in Bulk Solids and Nanostructures; 5.2.1 Kinetic Theory: Thermal Properties and Heat Flow; 5.2.2 Lattice Thermal Conductivity; 5.2.3 Electronic Thermal Conductivity; 5.3 Measurements of Thermal Conductivity in Nanostructures; 5.3.1 The 3ω Method; 5.3.2 In-Plane Thermal Conductivity Measurements; 5.3.3 Pump-Probe and Other Optical Measurements; 5.3.4 Raman Scattering and Thermal Conductivity; 5.4 Thermal Properties of Si-Based Nanostructures; 5.4.1 Two- and One-Dimensional Si Nanostructures: Si-on-Insulator and Si Nanowires
5.4.2 Epitaxially Grown Si/SiGe Nanostructures: Superlattices and Cluster Multilayers
Record Nr. UNINA-9910139499203321
Hoboken, NJ, : Wiley-Blackwell, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Silicon nanocrystals [[electronic resource] ] : fundamentals, synthesis and applications / / edited by Lorenzo Pavesi and Rasit Turan
Silicon nanocrystals [[electronic resource] ] : fundamentals, synthesis and applications / / edited by Lorenzo Pavesi and Rasit Turan
Pubbl/distr/stampa Hoboken, NJ, : Wiley-Blackwell, 2010
Descrizione fisica 1 online resource (651 p.)
Disciplina 661.0683
661.0683 22
Altri autori (Persone) PavesiLorenzo
TuranRasit
Soggetto topico Nanosilicon
Silicon crystals
ISBN 1-282-48274-2
9786612482748
3-527-62995-5
3-527-62996-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon Nanocrystals: Fundamentals, Synthesis and Applications; Contents; List of Contributors; 1 Introduction; References; 2 Electronic and Optical Properties of Silicon Nanocrystals; 2.1 Introduction; 2.2 Ab Initio Calculation for Small Nanocrystals; 2.2.1 Hydrogenated Silicon Nanocrystals; 2.2.2 Oxidized Silicon Nanocrystals; 2.2.3 Doped Silicon Nanocrystals; 2.2.3.1 Single-Doped Silicon Nanocrystals; 2.2.3.2 Codoped Silicon Nanocrystals; 2.2.4 Silicon Nanocrystals Embedded in a SiO2 Matrix; 2.3 Pseudopotential Calculations for Large Nanocrystals; 2.3.1 Effective Optical Gap
2.3.2 Radiative Lifetime2.3.3 Linear Optical Absorption; 2.3.3.1 Interband Absorption; 2.3.3.2 Intraband Absorption; 2.3.3.3 Excited State Absorption; 2.3.4 Third-Order Nonlinear Optical Properties; 2.3.5 Quantum-Confined Stark Effect in Si Nanocrystals; References; 3 Optical Properties of Intrinsic and Shallow Impurity-Doped Silicon Nanocrystals; 3.1 Introduction; 3.2 PL Properties of Intrinsic Silicon Nanocrystals; 3.2.1 Fundamental Properties; 3.2.2 Effect of Size and Shape Distribution on the PL Bandwidth; 3.2.3 Resonant Quenching of PL Band Due to Energy Transfer
3.2.4 PL Quantum Efficiency of Intrinsic Si Nanocrystals3.3 Shallow Impurity-Doped Si Nanocrystals; 3.3.1 Preparation of Impurity-Doped Si Nanocrystals; 3.3.2 PL from B-Doped Si Nanocrystals; 3.3.3 PL from P-Doped Si Nanocrystals; 3.3.4 Electron Spin Resonance Studies of Shallow Impurity-Doped Si Nanocrystals; 3.3.5 Location of Dopant Atoms; 3.4 P and B Codoped Si Nanocrystals; 3.4.1 PL Properties of P and B Codoped Si Nanocrystals; 3.4.2 PL Lifetime of P and B Codoped Si Nanocrystals; 3.4.3 Codoped But Not Compensated Si Nanocrystals; 3.5 Summary; References
4 Electrical Transport Mechanisms in Ensembles of Silicon Nanocystallites4.1 Introduction; 4.2 Background; 4.2.1 Basic Concepts Associated with Transport and Quantum Dots; 4.2.2 Previous Studies of Transport in Systems of Si; 4.3 Experimental Details; 4.4 Experimental Results and Their Interpretation; 4.4.1 The Low-x Regime; 4.4.2 The Low-x to Intermediate-x Transition Regime; 4.4.3 The Intermediate-x Regime; 4.4.4 The Percolation Threshold Regime; 4.4.5 The High-x Regime; 4.5 Discussion and Overview; References; 5 Thermal Properties and Heat Transport in Silicon-Based Nanostructures
5.1 Introduction5.2 Thermal Conductivity in Bulk Solids and Nanostructures; 5.2.1 Kinetic Theory: Thermal Properties and Heat Flow; 5.2.2 Lattice Thermal Conductivity; 5.2.3 Electronic Thermal Conductivity; 5.3 Measurements of Thermal Conductivity in Nanostructures; 5.3.1 The 3ω Method; 5.3.2 In-Plane Thermal Conductivity Measurements; 5.3.3 Pump-Probe and Other Optical Measurements; 5.3.4 Raman Scattering and Thermal Conductivity; 5.4 Thermal Properties of Si-Based Nanostructures; 5.4.1 Two- and One-Dimensional Si Nanostructures: Si-on-Insulator and Si Nanowires
5.4.2 Epitaxially Grown Si/SiGe Nanostructures: Superlattices and Cluster Multilayers
Record Nr. UNINA-9910831077303321
Hoboken, NJ, : Wiley-Blackwell, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Silicon nanocrystals [[electronic resource] ] : fundamentals, synthesis and applications / / edited by Lorenzo Pavesi and Rasit Turan
Silicon nanocrystals [[electronic resource] ] : fundamentals, synthesis and applications / / edited by Lorenzo Pavesi and Rasit Turan
Pubbl/distr/stampa Hoboken, NJ, : Wiley-Blackwell, 2010
Descrizione fisica 1 online resource (651 p.)
Disciplina 661.0683
661.0683 22
Altri autori (Persone) PavesiLorenzo
TuranRasit
Soggetto topico Nanosilicon
Silicon crystals
ISBN 1-282-48274-2
9786612482748
3-527-62995-5
3-527-62996-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon Nanocrystals: Fundamentals, Synthesis and Applications; Contents; List of Contributors; 1 Introduction; References; 2 Electronic and Optical Properties of Silicon Nanocrystals; 2.1 Introduction; 2.2 Ab Initio Calculation for Small Nanocrystals; 2.2.1 Hydrogenated Silicon Nanocrystals; 2.2.2 Oxidized Silicon Nanocrystals; 2.2.3 Doped Silicon Nanocrystals; 2.2.3.1 Single-Doped Silicon Nanocrystals; 2.2.3.2 Codoped Silicon Nanocrystals; 2.2.4 Silicon Nanocrystals Embedded in a SiO2 Matrix; 2.3 Pseudopotential Calculations for Large Nanocrystals; 2.3.1 Effective Optical Gap
2.3.2 Radiative Lifetime2.3.3 Linear Optical Absorption; 2.3.3.1 Interband Absorption; 2.3.3.2 Intraband Absorption; 2.3.3.3 Excited State Absorption; 2.3.4 Third-Order Nonlinear Optical Properties; 2.3.5 Quantum-Confined Stark Effect in Si Nanocrystals; References; 3 Optical Properties of Intrinsic and Shallow Impurity-Doped Silicon Nanocrystals; 3.1 Introduction; 3.2 PL Properties of Intrinsic Silicon Nanocrystals; 3.2.1 Fundamental Properties; 3.2.2 Effect of Size and Shape Distribution on the PL Bandwidth; 3.2.3 Resonant Quenching of PL Band Due to Energy Transfer
3.2.4 PL Quantum Efficiency of Intrinsic Si Nanocrystals3.3 Shallow Impurity-Doped Si Nanocrystals; 3.3.1 Preparation of Impurity-Doped Si Nanocrystals; 3.3.2 PL from B-Doped Si Nanocrystals; 3.3.3 PL from P-Doped Si Nanocrystals; 3.3.4 Electron Spin Resonance Studies of Shallow Impurity-Doped Si Nanocrystals; 3.3.5 Location of Dopant Atoms; 3.4 P and B Codoped Si Nanocrystals; 3.4.1 PL Properties of P and B Codoped Si Nanocrystals; 3.4.2 PL Lifetime of P and B Codoped Si Nanocrystals; 3.4.3 Codoped But Not Compensated Si Nanocrystals; 3.5 Summary; References
4 Electrical Transport Mechanisms in Ensembles of Silicon Nanocystallites4.1 Introduction; 4.2 Background; 4.2.1 Basic Concepts Associated with Transport and Quantum Dots; 4.2.2 Previous Studies of Transport in Systems of Si; 4.3 Experimental Details; 4.4 Experimental Results and Their Interpretation; 4.4.1 The Low-x Regime; 4.4.2 The Low-x to Intermediate-x Transition Regime; 4.4.3 The Intermediate-x Regime; 4.4.4 The Percolation Threshold Regime; 4.4.5 The High-x Regime; 4.5 Discussion and Overview; References; 5 Thermal Properties and Heat Transport in Silicon-Based Nanostructures
5.1 Introduction5.2 Thermal Conductivity in Bulk Solids and Nanostructures; 5.2.1 Kinetic Theory: Thermal Properties and Heat Flow; 5.2.2 Lattice Thermal Conductivity; 5.2.3 Electronic Thermal Conductivity; 5.3 Measurements of Thermal Conductivity in Nanostructures; 5.3.1 The 3ω Method; 5.3.2 In-Plane Thermal Conductivity Measurements; 5.3.3 Pump-Probe and Other Optical Measurements; 5.3.4 Raman Scattering and Thermal Conductivity; 5.4 Thermal Properties of Si-Based Nanostructures; 5.4.1 Two- and One-Dimensional Si Nanostructures: Si-on-Insulator and Si Nanowires
5.4.2 Epitaxially Grown Si/SiGe Nanostructures: Superlattices and Cluster Multilayers
Record Nr. UNINA-9910841487103321
Hoboken, NJ, : Wiley-Blackwell, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui